| Please check the examination details belo | w before entering your candidate information | |---|--| | Candidate surname | Other names | | Centre Number Candidate Number Pearson Edexcel Intern | national Advanced Level | | Monday 12 June 202 | 23 | | Morning (Time: 1 hour 20 minutes) | Paper reference WCH16/01 | | Chemistry International Advanced Le UNIT 6: Practical Skills in | | | You must have:
Scientific calculator, ruler | Total Marks | ## **Instructions** - Use black ink or ball-point pen. - If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). - Fill in the boxes at the top of this page with your name, centre number and candidate number. - Answer all questions. - Answer the questions in the spaces provided - there may be more space than you need. ## Information - The total mark for this paper is 50. - The marks for **each** question are shown in brackets - use this as a guide as to how much time to spend on each question. - You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, including your use of grammar, punctuation and spelling. - A Periodic Table is printed on the back cover of this paper. ## **Advice** - Read each question carefully before you start to answer it. - Show all your working in calculations and include units where appropriate. - Try to answer every question. - Check your answers if you have time at the end. Turn over ▶ # Answer ALL the questions. Write your answers in the spaces provided. - 1 A student investigated two aqueous solutions, labelled **P** and **Q**. Both solutions were green. Each solution contained one cation and one anion. - (a) Tests were carried out on solution **P**. Complete the table. | | Test | Observation | Inference | |-------|---|----------------------------|---| | (i) | A few drops of aqueous sodium hydroxide were added to 5 cm ³ of P | | Chromium(III) ions
may be present in P | | (ii) | More sodium hydroxide
solution was added
to the mixture from
(a)(i) until there was no
further change | | Chromium(III) ions
are confirmed to be
present in P | | (iii) | A few drops of dilute
nitric acid were added
to 5 cm ³ of a fresh
sample of P | | | | | A few drops of aqueous silver nitrate were added to this acidified solution of P | A white precipitate formed | The formula of the anion likely to be responsible for the white precipitate is | (b) State why, in the silver nitrate test on **P**, the nitric acid was not needed in this case. Justify your answer by considering the role of nitric acid in the silver nitrate test. | -// | 9 | 1 | |-----|---|-----| | ı | _ | .) | |
 |
 |
 | |------|------|------| | | | | | | | | | | | | |
 | | | | | e student carried out tests on ${\bf Q}$ and inferred that it was a solution of on(II) sulfate. | | |------|---|------| | (i) | The addition of dilute aqueous ammonia to a sample of solution ${\bf Q}$ produced a green precipitate which changed colour on standing. | | | | Explain why the colour change led the student to infer that Q contained iron(II) ions. | | | | | (2) | (ii) | Describe a test, and its positive result, that the student could have carried out to show the presence of sulfate ions. | | | | to show the presence of sunate ions. | (2) | | | | | | | | | | | | | | | entify, by name or formula, a metal cation, other than chromium(III) and iron(II), | | | wl | nich could give a green colour in an aqueous solution. | (1) | | | | | | | (Total for Question 1 = 10 ma | rks) | - **2** Two organic compounds, **X** and **Y**, are colourless liquids. Each compound contains only **one** functional group. - (a) A few drops of deionised water are added to a beaker containing ${\bf X}$. Misty fumes are formed. A drop of concentrated ammonia on the tip of a glass rod is placed in the misty fumes. White smoke is formed. (i) Deduce the functional group in ${\bf X}$. Justify your answer by referring to the observations. (3) (ii) State the precaution that you would take to minimise the risk of carrying out this test on the misty fumes. Assume gloves, safety goggles and laboratory coat are worn. (1) (b) The ^{13}C NMR spectrum of \boldsymbol{X} has two peaks. Draw the displayed formula of X. (1) (c) The mass spectrum of **Y** is shown. (i) Bubbles are observed when aqueous sodium hydrogeniarbonate is added to \mathbf{Y} . Deduce the formula of the **ion** responsible for the peak at m/z = 45. (1) (ii) Draw the structural formula of Y. (1) | (i) Name the compound that would react with both X and Y to form ethyl esters. | (1) | |--|-----| | (ii) A student prepared an ester using ${\bf X}$ and a suitable compound. | | | Explain why the student added aqueous sodium hydrogencarbonate to the reaction mixture to allow the presence of an ester to be detected. | (2) | | | | | | | | | | | e) Both X and Y react with concentrated ammonia but form different products. | | | Identify these products, by name or formula. | (2) | | Product with X | | | Product with Y | | | (Total for Question 2 = 12 mai | | 3 This question is about an experiment to investigate the kinetics of the reaction between iodine and propanone with an acid catalyst. The equation for the reaction is shown. $$I_2(aq) + CH_3COCH_3(aq) + H^+(aq) \rightarrow CH_3COCH_2I(aq) + 2H^+(aq) + I^-(aq)$$ To obtain the order of reaction with respect to iodine, the concentration of iodine in the reaction mixture was determined at various times. #### **Procedure** - Step 1 Mix 25 cm³ of 1.0 mol dm⁻³ sulfuric acid with 25 cm³ of 1.0 mol dm⁻³ propanone in a beaker. - Step 2 Start a clock as 50 cm³ of 0.020 mol dm⁻³ iodine solution is added to the beaker. Mix the reactants thoroughly. - Step **3** Tip a spatula measure of sodium hydrogencarbonate into a conical flask. After 3 minutes, pipette a 10.0 cm³ sample of the reaction mixture into the conical flask and mix thoroughly. - Step **4** Titrate the iodine in the sample with 0.010 mol dm⁻³ sodium thiosulfate solution using a suitable indicator. Record the titre. - Step 5 Repeat Steps 3 and 4 every 3 minutes to obtain four more titres. - (a) State why the sulfuric acid and propanone concentrations are both much larger than the iodine concentration. (1) (b) State why sodium hydrogencarbonate is used in Step 3. (1) (c) Name the indicator that would be used for the titration in Step **4**, stating the colour **change** that would be seen at the end-point of the reaction. (2) (d) Titration results from the experiment are shown. | Time/minutes | 3 | 6 | 9 | 12 | 15 | |--------------|-------|-------|-------|-------|-------| | Titre/cm³ | 16.05 | 15.30 | 14.50 | 13.70 | 12.95 | (i) Plot a graph of titre against time. (3) | (ii) | State why the volume of thiosulfate may be used for plotting the graph rather than the concentration of iodine. | (1) | |-----------|---|-----| | | | (1) | |
 | | | |
(iii) | State the order of reaction with respect to iodine. Justify your answer by referring to your graph. | (1) | |
 | | | |
 | | | - (e) Further experiments were carried out to determine the reaction orders with respect to propanone and sulfuric acid. - (i) A graph of the concentration of propanone against time is shown. The reaction is first order with respect to propanone. Determine two half-lives for this reaction. You **must** show your working on the graph. (2) First half-life Second half-life (ii) A graph of the reaction rate against the concentration of sulfuric acid is shown. Deduce the rate equation for the overall reaction of iodine and propanone with an acid catalyst. Use your answer from (d)(iii) and information from (e)(i) and the graph in (e)(ii). (1) (Total for Question 3 = 12 marks) **4** A group of students prepared methyl 3-nitrobenzoate by the nitration of methyl benzoate. ### **Procedure** - Step 1 Measure 9 cm³ of concentrated sulfuric acid into a small, dry conical flask. Label the flask **A** and place it in an ice bath. - Step **2** Add 4.0 cm³ of methyl benzoate to flask **A**. Gently swirl the flask. - Step **3** Mix 3 cm³ of concentrated nitric acid and 3 cm³ of concentrated sulfuric acid in a test tube to form the nitrating mixture. Place this test tube in the ice bath. - Step 4 Place a thermometer in flask **A**. Add the nitrating mixture very slowly to flask **A** using a dropping pipette. Take care to ensure that the temperature of the flask contents does not rise above 15 °C. - Step 5 Remove flask A from the ice bath and allow it to stand at room temperature for about 10 minutes. Pour the reaction mixture into a small beaker containing crushed ice. Stir the contents of the beaker with a glass rod. - Step 6 Allow the ice to melt. Separate the solid methyl 3-nitrobenzoate by suction filtration. Wash the solid with a small amount of deionised water and then with a little ice-cold ethanol. - Step **7** Recrystallise the methyl 3-nitrobenzoate using ethanol as the solvent. - Step 8 Determine the melting temperature of the purified crystals of methyl 3-nitrobenzoate. - (a) An ice bath is a mixture of ice and water in a beaker. Suggest an advantage of using an ice bath in Steps 1 and 3 rather than a beaker containing only ice cubes. Justify your answer. (1) (b) Side products form if the temperature rises above $15\,^{\circ}\text{C}$ in Step 4. Give the structure of **one** side product that may form. (1) (c) One student drew the suction filtration apparatus in Step 6 as shown. Identify the **three** ways in which this diagram is incorrect. You may assume that the apparatus is suitably clamped. (3) | Only | outline details of the method are required. | (4) | |--------|---|-----| Meth | rystals must be dried before the melting temperature can be determined. yl 3-nitrobenzoate cannot be dried by the addition of a solid drying agent as anhydrous calcium chloride. | | | | uggest why the addition of a solid drying agent is not suitable to dry | | | | nethyl 3-nitrobenzoate. | | | | | (1) | | | | | | | | | | | | | | | | | | (ii) S | tate how the crystals of methyl 3-nitrobenzoate could be dried. | (1) | | | | (1) | | | | | | | | | (f) The mass of dry methyl 3-nitrobenzoate crystals prepared by one of the students was 3.05 g. Calculate the percentage yield by mass of methyl 3-nitrobenzoate using the data shown. | Compound | Molar mass/g mol ⁻¹ | Density/g cm ⁻³ | |------------------------|--------------------------------|----------------------------| | methyl benzoate | 136 | 1.08 | | methyl 3-nitrobenzoate | 181 | | (3) (g) The melting temperature range of methyl 3-nitrobenzoate is given in a data book as $78-80\,^{\circ}\text{C}$. Suggest a melting temperature **range** for a sample of the methyl 3-nitrobenzoate **before** recrystallisation. Justify your answer. (2) (Total for Question 4 = 16 marks) **TOTAL FOR PAPER = 50 MARKS** mendelenum nobeljum lawrencium 103 102 101 fermium 100 berkelium californium einsteinium 97 98 99 E # 8 n neptunium plutonium americium 93 uranium protactinium 92 6 thorium 90 238 U [231] Pa 232 f 86 lutetium ytterbium 2 69 89 19 99 65 63 62 19 **4** 3 Tm thullum 167 Er erbium 165 Ho holmium 163 Dy dysprosium ₹ 1 15 B 152 Eu 150 Sm [147] Pa 144 [257] [254] [256] Md [253] Fm [254] Es [251] Cf [245] **BK** [247] 64 ۲ | rted | R radon 88 | 54 | 131.3
Xe
xenon | 83.8
Krypton
36 | 39.9
Ar
argon
18 | 20.2
Ne neon | (18)
4.0
He helium
2 | 0 (8) | |---|----------------------------|----|---------------------------------------|---|-------------------------------|---|-------------------------------|-------| | оееп геро | At
astatine
85 | 23 | 126.9
 | 79.9
Br
bromine
35 | 35.5
CI
chlorine
17 | 19.0
F
fluorine
9 | (77) | 1 | | 116 have I | Po
potentium
84 | 52 | 127.6
Te
tellurium | 79.0
Selenium
34 | 32.1
S
sulfur
16 | 16.0
O
oxygen
8 | (16) | • | | tomic numbers 112-116 hav
but not fully authenticated | Bi
bismuth
83 | 51 | 121.8
Sb
antimony | 74.9 As arsenic 33 | 31.0
P
phosphorus
15 | 14.0
N
nitrogen
7 | (15) | 'n | | atomic nu
but not f | Pb
lead
82 | 20 | 118.7
Sn
tin | 72.6
Ge
germanium
32 | Si
Sittcon
14 | 12.0
C
carbon
6 | (14) | 4 | | Elements with atomic numbers 112-116 have been reported but not fully authenticated | TI
thallium
81 | 49 | 114.8
In | 69.7
Ga
gallium
31 | 27.0
Al
atuminium
13 | 10.8
B
boron
5 | (13) | m | | Elem | Hg
mercury
80 | 48 | 112.4
Cd
cadmium | 65.4
Zn
zinc
30 | (12) | | | | | [272]
Rg
roentgenium | Au
gold
79 | 47 | Ag
silver | 63.5
Cu
copper
29 | (11) | | | | | Ds
Ds
damstadtum | Pt
platinum
78 | 46 | 106.4
Pd
palladium | 58.7
Ni
nickel
28 | (01) | | | | | [268] [271] Mt Ds meturerium damstadtium | iridium
77 | 45 | Rh
rhodium | 58.9
Co
cobalt
27 | (6) | | | | | Hs
Hassium | Os
osmium
76 | 4 | 101.1
Ru
ruthenium | 55.8
Fe
iron
26 | (8) | | 1.0
H
hydrogen
1 | | | [264]
Bh
bohrium | Re
rhenium
75 | 43 | [98]
Tc | 54.9
Mn
nanganese
25 | 0 | | | | | Sg
seaborgium | W
tungsten
74 | 42 | 95.9 [98] Mo Tc motybdenum technetium | 52.0 54.9 Cr Mn chromium manganese 24 25 | (9) | nass
ool
umber | | | | Db dubnium s | Ta
tantalum
73 | | . E | 50.9
V
vanadium
23 | (5) | relative atomic mass
atomic symbol
name
atomic (proton) number | Key | | | [261]
Rf
nutherfordum | | 40 | 91.2
Zr
zirconium | 47.9
Ti
titanium
22 | (4) | relativ
ator | | | | [227]
AC*
actinium | La*
lanthanum
57 | | | Sc
scandium
21 | (3) | | | | | Ra
radium | | 38 | 87.6
Sr
strontium | Ca
catcium 2 | Mg
magnesium
12 | 9.0
Be
beryllium
4 | (2) | 7 | | [223]
Fr
franctum | Cs
caesium
55 | 37 | | 39.1
K
potassium
19 | Na
sodium r | 6.9
Li
lithlum
3 | (1) | - | · Lanthanide series xaecodymium promethium samarium europium gadolinium terbium PN 9 4 29 cerium 6 5 5 28 Actinide series